Publications

* Undergraduate student, ** High school student

Baird, L.M., C.E. Berndsen, and J.D. Monroe. (2024) Malate dehydrogenase in plants: evolution, structure, and a myriad of functions. Essays Biochem. EBC20230089. Link

 

Sholes A.*, R. Asongakap*, S. Jaconski*, J. Monroe, C.E. Berndsen. (2024) Potassium cations expand the conformation ensemble of Arabidopsis thaliana β-amylase2 (BAM2). MicroPubl Biol. Jul 22;2024:10.17912/micropub.biology.001257. Link

 

Ozcan, K.E., J.D. Monroe (2023) Maize β-amylase7 encodes 2 proteins using alternative transcriptional start sites: Nuclear BAM7 and plastidic BAM2. Plant Physiology 192: 2871–2882. Link

 

Ravenburg, C.M.*, M.B. Riney*, J.D. Monroe, and C.E. Berndsen (2022) The β-amylase7 gene in Zea mays encodes a protein with structural and catalytic properties similar to Arabidopsis BAM2. Acta Crystallographica D78 Part 5. Link

 

Chandrasekharan N.P.*, C.M. Ravenburg*, I.R. Roy*, J.D. Monroe. and C.E. Berndsen (2020) Solution structure and assembly of β-amylase2 from Arabidopsis thaliana. Acta Crys. D 76: 357-365.  Link

 

Monroe, J.D. (2020) Involvement of five catalytically-active Arabidopsis β-amylases in leaf starch metabolism and plant growth. Plant Direct 4: 1-10.  Link

 

Monroe, J.D., and A.R. Storm (2018) Review: The Arabidopsis β-amylase (BAM) gene family: Diversity of form and function. Plant Science 276: 163-170.  Link

 

Monroe J.D., L.E. Pope*, J.S. Breault*, C.E. Berndsen and A.R. Storm (2018) Quaternary structure, salt sensitivity, and allosteric regulation of β-AMYLASE2 from Arabidopsis thaliana. Frontiers in Plant Science 9: 1176.  Link

 

Storm A., M. Kohler*, C. Berndsen, J. Monroe (2018) Glutathionylation inhibits the catalytic activity of Arabidopsis β‑amylase3 but not that of paralog β‑amylase1. Biochemistry 57: 711-721.  Link

 

Monroe J.D., J.S. Breault*, L.E. Pope*, C.E. Torres*, T.B. Gebrejesus**, C.E. Berndsen, A.R. Storm (2017) Arabidopsis β-amylase2 is a K+-requiring, catalytic tetramer with sigmoidal kinetics. Plant Physiology 175: 1525–1535.  Link

 

Seung D., J. Boudet, J. Monroe, T.B. Schreier, L. David, M. Abt, K.-J. Lu, M. Zanella, C.S. Zeeman (2017) Homologs of PROTEIN TARGETING TO STARCH control starch granule initiation in Arabidopsis leaves. The Plant Cell 29: 29: 1657–1677.  Link

 

Monroe, J.D., A.R. Storm, E.M. Badley*, M.D. Lehman*, S.M. Platt*, L.K. Saunders*, J.M. Schmitz* and C.E. Torres*. (2014) β−Amylase1 and β−amylase3 are plastidic starch hydrolases in Arabidopsis that appear to be adapted for different thermal, pH, and stress conditions. Plant Physiology 166: 1748–1763.  Link

 

Reinhold, H., S. Soyk, K. Simkova, C. Hostettler, J. Marafino*, S. Mainiero*, C.K. Vaughan, J.D. Monroe and S.C. Zeeman (2011) β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. The Plant Cell. 23: 1391–1403.  Link

 

Temple, L., S. Cresawn, and J. Monroe (2010) Genomics and Bioinformatics in undergraduate curricula:  Contexts for hybrid lab/lecture courses for entering and advanced science students. Biochemistry and Molecular Biol. Education 38: 23-28.  Link

 

Doyle, E.A., A.M. Lane*, J.M. Sides*. M.B. Mudgett, and J.D. Monroe. (2007) An α-amylase (At4g25000) in Arabidopsis leaves is secreted and induced by biotic and abiotic stress.  Plant Cell and Environment 30: 388-398.  Link

 

Monroe, J.D., M.L. Garcia-Cazarin, K.A. Poliquin*, and S.K. Aivano* (2003) Antisense Arabidopsis plants indicate that apoplastic α-glucosidase has α-xylosidase activity.  Plant Physiology and Biochemistry 41: 877-885.  Link

 

Monroe, J.D. and C.A. Hurney (2002) CCLI and curriculum change in biology. Council on Undergraduate Research Quarterly 22: 122-125.

 

Pike, C.S., W.S. Cohen and J.D. Monroe. (2002) Nitrate reductase. A model system for the investigation of enzyme induction in eukaryotes. Biochem and Mol Biol Ed. 30: 111-116.  Link

 

Monroe, J.D., C.M. Gough*, L.E. Chandler*, C.M. Loch*, J.E. Ferrante*, and P.W. Wright*. (1999) Structure, properties, and tissue localization of apoplastic α-glucosidase in crucifers. Plant Physiology 119: 385-397.  Link

 

Monroe, J.D., B.D. Hall*, C.M. Gough*, and A.L. Stephen*. (1997) Nucleotide sequence of an α-glucosidase gene (Accession No. AF014806) from Arabidopsis thaliana. Plant Physiology 115: 863.

 

Monroe, J.D. and I.T. Knight. (1996) Students discover new genes in an investigative undergraduate molecular biology course. Council on Undergraduate Research Quarterly 16: 109-114.

 

Wang, Q., J.D. Monroe, and R.D. Sjölund. (1995) Identification and characterization of a phloem-specific β-amylase. Plant Physiology 109: 743-750.  Link

 

Monroe, J.D., M. Salminen, and J. Preiss. (1991) Nucleotide sequence of a cDNA clone encoding a β-amylase from Arabidopsis thaliana. Plant Physiology 97: 1599-1601.

 

Monroe, J.D. and J. Preiss. (1990) Purification of a β-amylase that accumulates in Arabidopsis thaliana mutants defective in starch metabolism. Plant Physiology 94: 1033-1039.  Link

 

Casper, T., T.P. Lin, J. Monroe, W. Bernhard, S. Spilatro, J. Preiss, and C. Somerville. (1989) Altered regulation of β-amylase activity in mutants of Arabidopsis with lesions in starch metabolism. Proceedings of the National Academy of Science USA 86: 5830-5833.  Link

 

Monroe, J.D. and T.A. LaRue. (1989) Effects of carbohydrate on the internal oxygen concentration, oxygen uptake, nitrogenase activity in detached pea nodules. Plant Physiology 91: 603-609.  Link

 

Monroe, J.D., T.G. Owens, and T.A. LaRue. (1989) Measurement of the fractional oxygenation of leghemoglobin in intact detached pea nodules by reflectance spectroscopy. Plant Physiology 91: 598-602.  Link