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Developing Madison Accelerator @i
Laboratory as a Unique Nuclear
Research User Facility at James
Madison University
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Madison Accelerator Laboratory (LAB)

* History/Facilities

* Beam Production and Characteristics
* Nuclear Astrophysics Applications

* Photon Activation Experiments

e Collaborations
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MAL Background

» James Madison University is an R2 university located in
Harrisonburg, VA

* Dept. of Physics and
Astronomy is an
undergraduate-only
department




MAL History

* 1989 - Rockingham Memorial Hospital Cancer Center built at 100 E
Grace St.

- Concrete shielding poured for two vaults based on calculations for two
Siemens 15 MeV linacs
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Ret: (a} HCRP Report # 43
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1 Assumptions

11) Tha first linac will produce 300 rad/min. at
Lsocenter of 100 cm

{2) All concrete is to have density of 2.35 g/emd
(147 Lb/Tt3) or greater,

(3) Conatruction practices are to be in accordance
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penstration of shielding wall by ducts, etc.
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MAL History

* 1989 - Rockingham Memorial Hospital Cancer Center built at 100 E
Grace St.

¢ 1998 — Current Siemens Mevatron MD2 and Nucletron Simulix

purchased, installed, and commissioned at RMH Cancer Center
- Patient treatment commences
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MAL History

* 1989 - Rockingham Memorial Hospital Cancer Center built at 100 E
Grace St.

* 1998 — Current Siemens Mevatron MD2 and Nucletron Simulix
purchased, installed, and commissioned at RMH Cancer Center

« 2010 — RMH sells building to JIMU and moves offsite, bequeathing

facility and linac to JMU Department of Physics and Astronomy
- Facilitated a priori by former physics AUH Steve Whisnant and Prof. Adriana
Banu
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MAL Facilities

« 2017 — JMU renovates Madison Hall and moves In

« 2018 — MAL is licensed for operatlons by the Virginia Department of
Health >




MAL Facilities

* Linac: Siemens Mevatron MD2 15 MeV (mfg. 1998)
- Shielded vault with area monitoring
- Suite of HPGe detectors with low-BG shields
- Vacuum chamber

- Charged particle detectors

- NIM, VME, and standalone
digital DAQ systems




MAL Linac

- Magnetron-based electron accelerator
- Beam current: 0.1-10 mA avg, 0.15-1.5 A peak

 Electron energy range tunable from 4-15
MeV

* Photon production via bremsstrahlung

irradiator
- 6 MeV and 15 MeV standard modes, photon
flux ~ 107 y/s

- Standalone unit operable by single
Individual, extremely low overhead and

footprint
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MAL Linac Head

electron beam { }
after acceleration

270° bending
magnet
in wave guide

flattening filter
mounted on the carousel
depending on the radiation
quality different filters or
scattering foils can be
brought into the beam

e

two orthogonal sets

of movable collimators
allow definition

of a rectangular field

celerato,
5 . 4o
o %
§C %
o (-]
AEEAY O Y&
T
% 1 &

C. J. Karzmark and R. J. Morton, A Primer On Theory And Operation of

Linear Accelerators in Radiation Therapy, Madison, WI: Medical Physics
Publishing, 1998.
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Beam Characteristics

* Pulsed 3 us beam at 200+10 Hz

Beam Current Single Pulse

Beam Current Pulse Train
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Beam Characteristics

* Pulsed 3 us beam at 200+10 Hz

Beam Current Single Pulse

—
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Time (us)

2.5

3.0 3.5 4.0

» ~1 A peak pulse height
» ~2.5 uC total pulse charge
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Beam Characteristics

* Pulsed 3 us beam at 200+10 Hz

Beam Current Pulse Train

* ~0.06% duty cycle 02
- ~Time-averaged beam current =
of ~5 mA s
—0.8 A1
» 200 Hz PRF adjustable to 10
maintain constant output ———————————
Time (ms)
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Beam Characteristics

* Bremstrahlung flux: ~10°-108 y/s average
- Estimated ~107 y/s via 1°/Au activation, tunable to 10x in either direction

* More precise flux measurements based on 1B(y, y’) scattering
underway
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Photoneutron Reaction Rates

AL I The reaction rate for a photodisintegration reaction
Puiyn) Pt
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“Superposition Method”
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Energy Measurements
* Electron energy and bremsstrahlung endpoint energy tunable from 4-16 MeV

* Not easily measureable, however!
- Water tank method fine for determining whether on-spec (6 or 15 MeV)

15 MeV 6 MeV
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Tissue Max Ratio
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Energy Measurements
* Electron energy and bremsstrahlung endpoint energy tunable from 4-16 MeV

* Not easily measureable, however!

- Water tank method fine insufficient for intermediate energies due to dependence of energy
distribution on flattening filter design

10 MeV TMR Curves Comparing Filters

1.0

Photons

3
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Water Tank
Phantom

15 MeV 6 MeV
filter filter

* 15 Mev Flattening Filter
* 6 MeV Flattening Filter
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Energy Measurements

» Direct HPGe/Nal spectra not reproducible
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Energy Measurements

* Developing deutron breakup measurements similarly to ELBE
facility

concrete shielding
electron
beam
dump

photo-activation site

* [rradiate deuteron .
y and measure p boam | —JH S @A I

energy steering f// Ihardener deut;rcn /

breakup
magnets  radiator quartz window target

HPGe + BGO
purging magnet

cluster detector

Figure 1. Bremsstrahlung facility and experimental area for photon-scattering and photo-
dissociation experiments at the ELBE accelerator.

ST Wagner et al. (J. Phys. G 31 (2020
Ma £l g (J. Phy (2020))
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Energy Measurements

* Have acquired deuteron target and assembling shielded beam line

—

1R

-
t" :




Energy Measurements

* Pulse structure saturates charged particle detectors

- Average vy flux at suitable levels for detectors, but peak pulse current creates
peak y flux that saturates detectors

» Solution: reduce peak flux while maintaining sufficient average flux
- New irradiator (Al or Cu)?

Normal Si Detector Pulse Count (Th-228) D-PE Scatter Pulse Count with Linac On
50005 g 5000% // \\
4000; 4000; / \
2000% zouo% / \
1000: - \ muoé / \
= - — E / \




Photon Activation Analysis

 Activate samples with (y,n) and measure y decay spectrum
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Photon Activation Analysis

* [rradiate samples and measure y spectrum




Half-Life Measurements

High-precision measurements of half-lives for ®*Ge, 73Se, 83Sr, 8>Sy,
and ®3Zn radionuclides relevant to the astrophysical p-process
via photoactivation at the Madison Accelerator Laboratory

T.A.Hain'-S. J. Pendleton' - J. A. Silano? - A. Banu'

Received: 3 September 2020 / Accepted: 31 December 2020
© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021

Abstract

The ground state half-lives of “Ge, 7*Se, 3Sr, ©*Zn, and the half-life of the 1/2” isomer in *Sr have been measured with high
precision using the photoactivation technique at an unconventional bremsstrahlung facility that features a repurposed medical
electron linear accelerator. The y-ray activity was counted over about 6 half-lives with a high-purity germanium detector,
enclosed into an ultra low-background lead shield. The measured half-lives are: T, ,Z(GQGe)z 38.82 + 0.07 (stat) & 0.06 (sys)
h; 7,,("*Se)=7.18 + 0.02 (stat) + 0.004 (sys) h; T;,»,(*Sr)=31.87 + 1.16 (stat) + 0.42 (sys) h; T},,(*™Sr)=68.24 + 0.84
(stat) = 0.11 (sys) min; Tm(632n)= 38.71 £ 0.25 (stat) £ 0.10 (sys) min. These high-precision half-life measurements will
contribute to a more accurate determination of corresponding ground-state photoneutron reaction rates, which are part of
a broader effort of constraining statistical nuclear models needed to calculate stellar nuclear reaction rates relevant for the
astrophysical p-process nucleosynthesis.
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Half-Life Measurements
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Fig.3 Decay curve of “Ge at Ey=1106.8 keV (left) and its corresponding % residual between the linear fit and decay data points (right)
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Composition using PAA

* Activate samples with (y,n) and analyze y decay spectra
- Example of an Islamic Prayer Seal, primarily aluminum oxides

[e]
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Composition using PAA

* Activate samples with (y,n) and analyze y decay spectra

 Limited by y spectrum of target materials with (y,n) thresholds and

available products, availability of standards of target materials
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Collaborations

* PAA and other beam experiments possible with low overhead

* May also be used to mimic clinical linac conditions for biomedical
experiments

Radiocatalytic performance of oxide-based nanoparticles for targeted
therapy and water remediation

M. Molina Higgins (Ph.D)?, A. Banu (Ph.D)", S. Pendleton (Ph.D)®, J.V. Rojas (Ph.D)**

* Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, United States
® Department of Physics and Astronomy, James Madison University, Harrisonburg, VA, United States

ARTICLEINFO ABSTRACT

Keywords: The radiocatalytic behavior of zinc oxide (Zn0), hafnia (HfO»), titania (TiO2), and gold-titania (Au@TiO2) na-
Radiocatalysis nomaterials was investigated through the degradation of methylene blue as the organic probe. The dye de-
X-rays

gradation by X-rays from a medical linear accelerator with endpoint energy of &6 MeV was enhanced in the
presence of the oxide-based nanoparticles evidencing their promise as radiosensitizers. An increase in the dye
apparent reaction rate constants of ~20% and up to 82% was observed in the presence of oxides-based nano-
particles during exposure to X-rays. This enhancement is attributed to the increased production of reactive
species in solution. Gold-titania nanocompaosites evidenced one of the highest radiocatalytic activity among the
materials under investigation, with an increase in the MB apparent reaction rate constant of 50.3%. Overall, our
experiments showed that radiocatalysis with oxides-based nanoparticles is a promising concept worth exploring
in applications such as targeted radiation therapy and pollutant removal of water streams.

Methylene blue
Supported gold nanoparticles
Metal oxide nanoparticles
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Collaborations

* PAA and other beam experiments possible with low overhead

* May also be used to mimic clinical linac conditions for biomedical
experiments

- Beam time Is flexible and easy to accommodate given small
footprint and required staff
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Conclusion

* We have an active user faclility with low overhead and staff

requirements for research and teaching
- Already integrated into education/research curriculum

* In-house measurements successful, especially for nuclear
astrophysics and PAA

» Characterization and tenability of beam a work in progress

* Open for more collaborations
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