Universal indicator goes from red (pH 4) to violet (pH10) as the pH of a substance changes. Adding NaOH to water starts the solution off at pH 8-9 (blue). When dry ice is added to water it forms carbonic acid, and lowers the pH, which is the reason for the color changes. The “fog” that we see is condensed water vapor though, not carbon dioxide gas.
This demo uses acid base chemistry and an indicator to make an ink that will appear or disappear depending on the solution added to it. Phenolphthalein, which is clear, reacts with a base, and then turns pink.
Diet soda contains artificial sweeteners while regular soda has sugar in it. Artificial sweeteners are so sweet so only a small amount is needed, where as much more sugar is needed to achieve the same sweetness. Because regular soda has more mass in the same size can, it is more dense than the diet soda.
This demo decomposes ammonium dichromate using a fuse soaked in ethanol. The reaction is a violent one, that resembles a volcano. Ammonium dichromate is an orange solid, while chromium (III) oxide is a dark green solid.
(NH4)2Cr2O7(s) → Cr2O3(s) + N2(g) + 4H2O(g)
As water evaporates off the surface of flower petals, capillary action in the stems pulls water up to the leaves and petals. If the water is colored, that also colors the petals.
When different ionic compounds are heated, electrons around the metal atom become excited and jump energy levels. When the electrons fall back to ground state they release light and heat energy. The amount of energy released determined the wavelength and color of the light released, resulting in different colored flames.
In this demo, food coloring is added to a stirring beaker of water to create a tornado of color. This could be used as an example of a physical change, or to demonstrate the importance of properly mixing solutions.
When a small amount of water is heated inside the can, steam is produced, filling the can. When the can is inverted into cold water, all of the steam condenses quickly causing the can to implode.
This demo harnesses the reaction of baking soda and vinegar to blow a cork off a test tube.
NaHCO3 (s) + CH3COOH (aq) →CO2 (g) + H2O (l) + CH3COONa (aq)
CO2 gas from subliming dry ice gets caught in a soapy solution creating a column of bubbles. When the bubbles are popped, the “fog” that we see is condensed water vapor, not carbon dioxide gas.